

ASSESSMENT OF 'CYTOTHREAT' OF THREE CHEMOTHERAPEUTIC DRUGS USING ALLIUM TEST AND ITS AMELIORATION BY AQUEOUS PLANT EXTRACTS

Sudha Gupta, Animesh Kumar Datta*, Ankita Pramanik and Suvendu Dey

Department of Botany, University of Kalyani, Kalyani - 741235, West Bengal, India.

Abstract

Allium test is used to evaluate 'Cyto Threat' of three chemotherapeutic drugs namely, cisplatin, imatinib and harmine (concentrations used: 0.050%, 0.075% and 0.100%) with an objective to assess the extent of cytological damages as those drugs may induce in non-targeted cells of host (human beings) as well as in other biological organisms in ecosystem on exposure to the environment. Results suggest the followings: 1) the drugs affect DNA synthesis as well as induce cytological abnormalities in both dividing and resting cells and aberration frequency is found dose dependent; 2) imatinib and harmine are clastogenic in nature whereas all three drugs are found affecting cellular metabolism and 3) harmine is found to induce enhanced mitotic aberrations than the other studied drugs. Results detect the CytoThreat of the employed drugs and therefore risk monitoring of the drugs on environmental exposure is required apart from selecting unique dose for chemotherapy. Further, the present study encompasses the significance of aqueous plant extracts (seed extract of *Nigella sativa* and rhizome extract of *Curcuma longa*) in amelioration of cytotoxicity induced by the chemotherapeutic agents. The aqueous extracts may be helpful for bioremediation.

Key words: Allium test, Amelioration, Aqueous plant extracts, Bioremediation, Chemotherapeutic drugs, Cytotoxicity.

Introduction

Cisplatin (Cis-diamminedichloroplatinum (II); CIS-DDP), a platinum based anticancerous drug (Rosenberg, 1980; Desoize and Madoulet, 2002; Cepeda et al., 2007; Florea and Büsselberg, 2011) is used worldwide as a potent chemotherapeutic agent (Kartalou and Essigmann, 2001; Fuertes et al., 2003; Basu and Krishnamurthy, 2010). However, it is often accompanied by toxic side effects and secondary malignancies (Chen et al., 2009). Imatinib (also known as "Glevec" or "Glivec"), called as "magical bullet", is a tyrosine kinase inhibitor and is especially used for treatment of chronic myeloid leukaemia-CML (Deininger et al., 2005; Iqbal and Iqbal, 2014), gastrointestinal stromal tumors (GISTS) and other malignancies (Goswami et al., 2016). Besides the synthetic chemotherapeutic drugs cisplatin and imatinib, a plant based (Peganum harmala L., Family: Zygophyllaceae) chemotherapeutic agent harmine (a

*Author for correspondence : E-mail : dattaanimesh@gmail.com

natural β carboline alkaloid-Li *et al.*, 2017) is also a potent inhibitor of tumor development (Jiménez *et al.*, 2008). As the drugs are administered to human system, it is of utmost significance to assess their cytotoxicity as nontargeted cells of the host are also exposed to them.

Heath *et al.*, (2016) categorized the chemotherapeutic drugs as hazardous compounds, and are toxic to reproductive system. Apart from the concern of the drugs affecting non-targeted cells in host (as none of them are site specific), the residual amount excreted through faeces and urine and through improper handling can also induce detrimental effects on different components of ecosystem. Kosjek and Heath, (2011) highlighted the necessity to investigate "CytoThreat" (project funded by the European Community's 7th Framework Programme, 2011-2014, agreement n-265264) of chemotherapeutic drugs (parent compounds, metabolites and transformation products) for monitoring of environmental risk assessment. With the view to it, the present paper evaluates the cytotoxic effects of three chemotherapeutic drugs namely, cisplatin, imatinib and harmine in root tip meristematic cells of Allium cepa L. Allium test is used as it is simple, cost effective and an efficient method for assessment of cytotoxicity (Bellani et al., 1991; Abu and Mba, 2011), and the results obtained mostly corroborate with other test organisms (Fiskesjö and Levan, 1993; Verma and Srivastava, 2018) including mammalian system (Teixeira et al., 2003). Further, the study also encompasses whether or not there is any protective roles of aqueous plant extracts (seed extract of black cumin-Nigella sativa L. and rhizome extract of Curcuma longa L.) against cytotoxicity induced by the environmental pollutants (cisplatin, imatinib and harmine). The aqueous plant extract can be administered with relative ease by expending minimum cost. Seed extract of N. sativa (Majdalawieh and Fayyad, 2016; Mollazadeh et al., 2017) and rhizome of C. longa (Sa et al., 2010) are reported to possess potent cancer ameliorating effects.

Meterials and Methods

Chemotherapeutic Drugs

Cisplatin (Cytoplatin-50 Aqueous, Cipla; 50 mg/L injection dose), imatinib (Ibatkin-400 tablet, Oncocare) and harmine (Sigma) were the drugs studied for their cytotoxicity using Allium test. The concentrations used for the purpose were 0.100, 0.075 and 0.050%. For cisplatin, 50 mg was dissolved in 50 mL of double distilled water (ddH₂O) as source stock solution (0.100%); while each tablet of imatinib was 400 mg and it was dissolved in 40 mL of water (ddH₂O) to make 0.100%. Similarly, 0.100% harmine concentration was also prepared by dissolving 4.5 mg of the drug in 4.5 mL of ddH₂O. It is significant to note that 0.100% dose of cisplatin and imatinib are generally used in each chemotherapeutic treatment as referred by oncologists. Subsequent dilutions (0.075% and 0.050%) of the drugs were made in ddH₂O with an objective to assess cytotoxicity, if any, under low potency as residual effects.

Preparation of Plant Extracts

Seeds (2 g) of *Nigella sativa* L. (black cumin; Family Ranunculaceae) and shade dried (72 h) rhizomes (2 g) of *Curcuma longa* L. (Curcumin, Family: Zingiberaceae) were crushed to powdered samples by using liquid nitrogen (-80°C). Each of the powdered sample was dissolved thoroughly in 25 mL of ddH₂O using a magnetic stirrer and subsequently filtered using Whatman No. 1 filter papers. In each case, 1 mL filtrate was taken and the volume of aqueous extract was made up to 100 mL (1.0%).

Treatments

Onion bulbs (A. cepa var. aggregatum, procured from farmers) were sprouted in sand-saw dust (1:1) trays and dipped in different concentrations (0.100%, 0.075%)and 0.050%) of cisplatin, imatinib and harmine for 24 h durations. In each concentration (excepting harmine where 2 sprouted bulbs were treated in each concentration due to lesser amount of solution), 6 sprouted onion bulbs were dipped. Treatments were performed in Petri plates. Following 24 h treatment, 6 roots (2 from each of the 3 onion bulbs and in case of harmine 3 roots from each bulb) were cut, fixed in acetic-ethanol (1:1) for 30 mins and preserved in 70% ethanol for further uses. The treated onion bulbs were then dipped in aqueous extracts (3 bulbs in each extract following cisplatin and imatinib treatments; while one bulb each in case of harmine) of N. sativa and C. longa for 24 h duration, and following treatments 6 roots from each set were cut, fixed (acetic-ethanol in 1:1 ratio) and preserved (70% ethanol) under refrigeration ($16^{\circ}\pm1^{\circ}C$).

A control set was maintained $(24^{\circ}\pm1^{\circ}C)$ under uniform laboratory condition(s) following treatment with ddH₂O for 24 h duration. The same stock of *A. cepa* bulbs were used throughout the experiments with 3 replicas for each set.

Assessment of Cytotoxicity

Cisplatin, imatinib, and harmine treated roots (including control roots) as well as roots concomitantly treated with aqueous extracts were cytologically evaluated following staining in 2% aceto-orcein in HCl (9:1) mixture and squashing in 45% acetic acid. For each set, 3 slides (each slide considering as replica) were prepared (2 root tips were squashed in each slide) and observed under Leitz Laborlux S compound microscope with Leica E3 scientific camera attached to it.

Mitotic index (number of dividing cells/total cells scored×100) and, aberration types recorded both in dividing and resting cells and their frequencies were estimated in relation to control.

Ameliorative potentiality (attributes studied: mitotic index and total aberration frequency in dividing and resting cells) of the aqueous plant extracts was also assessed with fold increase (+) or decrease (-) and in percentage in relation to respective control considering the measured values of each toxicant in each concentration.

Statistical Analysis

Data procured for dividing cell frequency and total aberration frequency in dividing and resting cells including untreated control were statistically analyzed to determine

Fable 1: Assessment of cytotoxicity of three chemotherapeutic drugs in root tip meristem cells of *A. cepa.*

significant variations, if any, between/among doses of treatment using one-way ANOVA (analysis of variance) and computation of CD (critical difference) at 0.05 level. Further, ameliorative potentialities between/among doses of treatments including toxicants were also assessed by similar statistical tool.

Results and Discussion

Cytotoxicity Induced by Cisplatin, Imatinib and Harmine

Mitotic index and types of cytological aberrations (Fig. 1a–1) detected in dividing and resting cells of untreated control and in chemotherapeutic drugs are presented in table 1.

Mitotic index

In relation to control, dose dependent significant (p < 0.05) reduction in dividing cell frequency is noted in treatments with cisplatin and harmine whereas both significant (p < 0.05) reduction (conc. - 0.05%) and enhancement (conc. - 0.10%) are studied following the drug imatinib. Thus, the chemotherapeutic drugs are found to alter cell cycle dynamics. Reduction in mitotic index by the drugs contributes to their significance in chemotherapy. Compared to control, mitotic index is found relatively more affected in cisplatin treatments than the other two drugs.

Basu and Krishnamurthy, (2010) opined that cisplatin kills cancer cells by interacting with DNA and inhibits its synthesis. Siddik, (2002) suggests that cisplatin induce DNA cross-links as well as DNA-protein cross links interfering with cell division. Non target specific interaction of cisplatin with DNA and cellular proteins (Cepeda *et al.*, 2007) is reported to inhibit DNA replication and cell division (Hartley, 1985; Farrel, 1989). Imatinib mesylate is found to induce acute toxic effects in mitotic cell division of *A. cepa* (Pichler *et al.*, 2014).

Aberration types and frequencies

Untreated control show 2n = 16 chromosome at metaphase (Fig. 1a). The only aberration studied in control is sticky and clumped configuration of chromosomes in 3.81% cells. Aberrations encountered in chemothera-peutic drugs treated mitotic cells are sticky and clumped configuration of chromosomes (Fig.1b), pseudo-chiasma formation (Fig.1c), chromosomal groupings (Fig. 1d), chromosomal fragments (Fig. 1e), rings (Fig. 1f), laggards (Fig. 1g) and bridges (Figs. 1h-i) in dividing cells and micronuclei (Fig. 1j), giant (Fig. 1k), binucleate (Fig. 11) and anucleate cells formation in resting cells. Most of the giant cells observed in all treatments are with cellular shape

Frequency lresting cells (%) abnorma-10.26 15.96 19.39 12.70 17.51 4.00 0.00 2.28 7.84 2.29 3.91 of 0.39 0.58 1.85 2.03 0.64 0.00 1.41 0.0 0.63 1.7 Binuleate Abnormality in resting 10.02 14.14 13.20 15.30 2.70 0.0 2.28 6.67 8.11 3.61 Giant cells (%) 0.00 0.0 0.00 0.63 0.00 0.00 0.59 0.00 2.28 0.00 Anucelate 0.00 0:00 0.00 0.00 0.54 0.93 0.74 0.73 1.17 0.91 Micronulei Resting Total 1956 9198 2238 2096 1513 1917 2195 1628 2071 cell 711 Frequency abnormaldividing cells (%) 21.78 37.93 17.34 13.22 26.67 40.30 7.02 4.55 8.41 3.81 2.96 0:00 2.46 0.00 0.62 0.00 0.75 0.00 0.00 4.29 0.51 Bridge(s) Abnormality in dividing cells (%) 0.00 0.58 0.00 3.94 0.75 0.0 0.00 0.00 3.81 0.41 Laggard(s) 0.00 0.00 1.65 4.93 0.0 6.19 1.49 0.00 0.93 0.51 Fragment(s) 0.00 0.00 1.10 0.99 0.75 0.0 0.00 0.00 1.43 0.00 BuiA 0.70 2.75 2.86 2.46 0.00 0.83 0.00 0.00 4.48 2.31 Grouping 0.95 0.83 0.58 0.70 0.00 0.00 0.99 0.00 0.00 0.75 Pseudochiasma guiduni^O 22.17 13.87 20.37 31.34 7.14 3.54 6.85 3.81 4.96 7.71 Sticky and Mitotic 12.87 13.28 19.35 11.43 index 4.4 8.13 9.58 9.93 7.26 2.26 $\binom{0}{2}$ 7.71 diving cells Total 210 203 289 242 173 427 363 132 no. of 198 321 scored cells 2245 9625 1876 1838 2244 2436 2417 2120 1845 Total 2437 no. \mathbf{of} Treatments Doses 0.075 0.100 0.100 0.075 0.050 0.075 0.050 0.100 0.050 8 0 Imatinib Cisplatin Harmine CD at 5% Control level

20	
6	
<u> </u>	
∇	
Ĕ	
\circ	
\mathbf{I}	
5	
- ŭ	
õ.	
·Ħ	
=	
5	
0	
-	
.E.	
ŏ	
: <u> </u>	
12	
두	
SO .	
\sum	
÷	
Ч.	
×	
2	
ö	
1	
5	
-	
S	
-H	
g	
್ಷ	
53	
2	
11	
¥	
ତ	
÷	
9	
q	
Ś	
2	
2	
Ĕ	
5	
ā	
0	
3	
÷	
Ĕ	
0	
⊵	
Ē	
a	
. Ξ	
5	
Ę	
Q	
9	
õ	
.2	
at	
Ĕ	
<u>e</u> .	
5	
ŭ	
9	
\triangleleft	
CI.	
le	
-	

Table 2: Ameliorative potenti	iality of tw	o aqueous pl	ant extracts ag	ainst cytotoxi	city studied	in root tip ce	lls of A. cepa.				
Treatment	Total		Mitotic		Frequ	ency of abno	rmal	Total	Freque	incy of abnor	mal resting
with doses	cells		Index		div	/iding cell (%		resting		cell (%)	
(%)	scored	Observed Value	Fold decrement/ increment	Ameliorating (%) tooffect	Dbserved Value	Fold decrement	Ameliorating (%) foot (%)	cells	bəvrəsdO Value	Fold forement	Ameliorating (%) foot (%)
Cisplatin 0.050	2437	9.93	-		7.02			2195	2.28	-	
Cisplatin 0.050 + <i>N. sativa</i>	1738	4.78	-5.15	+51.86	0.00	-7.02	-100.00	1655	2.05	-0.23	-10.09
Cisplatin $0.050 + C. longa$	2723	10.98	+1.05	+10.57	4.01	-3.01	-42.88	2424	2.15	-0.13	-5.70
Cisplatin 0.075	2244	7.71			17.34			2071	4.00		
Cisplatin 0.075+ <i>N. sativa</i>	1689	8.76	+1.05	+13.62	0.00	-17.34	-100.00	1541	3.70	-0.30	-7.50
Cisplatin $0.075 + C. longa$	2364	12.10	+4.39	+56.94	6.64	-10.70	-61.71	2078	3.46	-0.54	-13.50
Cisplatin 0.100	9625	4.44			21.78			9198	3.91		
Cisplatin $0.100 + N$. sativa	3010	10.50	+6.06	+136.49	4.75	-17.03	-78.19	2694	3.04	-0.87	-22.25
Cisplatin $0.100 + C. longa$	3120	10.03	+5.59	+125.90	7.35	-14.43	-66.25	2807	2.71	-1.20	-30.69
CD value at 5% level		1.42			1.16				1.09		
Imatinib 0.050	2436	8.13			4.55			2238	7.84	1	1
Imatinib 0.050 + <i>N. sativa</i>	2009	14.88	+6.75	+83.03	3.68	-0.87	-19.12	1710	4.33	-3.51	-44.77
Imatinib 0.050 + <i>C. longa</i>	1933	13.66	+5.53	+68.02	3.79	-0.76	-16.70	1669	5.15	-2.69	-34.31
Imatinib 0.075	2417	13.28	ļ	1	8.41	1		2096	12.70	1	
Imatinib 0.075+ <i>N. sativa</i>	2004	9.53	-3.75	-28.24	0.00	-8.41	-100.00	1813	5.52	-7.18	-56.54
Imatinib 0.075 + <i>C. longa</i>	2042	9.21	-4.07	-30.65	0.00	-8.41	-100.00	1854	3.83	-8.87	-69.84
Imatinib 0.100	1876	19.35			13.22			1513	17.51		
Imatinib $0.100 + N.$ sativa	2003	9.19	-10.16	-52.51	11.41	-1.81	-13.69	1819	4.67	-12.84	-73.33
Imatinib 0.100 + <i>C. longa</i>	1890	9.05	-10.30	-53.23	0.00	-13.22	-100.00	1719	3.20	-14.31	-81.72
CD value at 5% level		1.59			0.72				1.68		
Harmine 0.050	1838	11.43			26.67			1628	10.26		
Harmine n $0.050 + N$. sativa	1690	9.88	1.55	13.56	0.00	-26.67	-100.00	1523	6.30	-3.96	-38.60
Harmine 0.050 + C. longa	1960	8.42	3.01	26.33	0.00	-26.67	-100.00	1795	4.29	-5.97	-58.19
Harmine 0.075	2120	9.58			37.93			1917	15.96	1	-
Harmine 0.075+ <i>N</i> . sativa	2110	11.47	-1.89	-19.73	16.94	-20.99	-55.34	1868	3.75	-12.21	-76.50
Harmine 0.075 + C. longa	2134	8.34	1.24	12.94	0.00	-37.93	-100.00	1956	5.06	-10.90	-68.30
Harmine 0.100	1845	7.26			40.30			1711	19.39		
Harmine $0.100 + N$. sativa	1894	11.03	-3.77	-51.93	16.75	-23.55	-58.44	1685	6.11	-13.28	-68.49
Harmine $0.100 + C. longa$	1887	14.26	-7.00	-96.42	11.90	-28.40	-70.47	1618	6.37	-13.02	-67.15
CD value at 5% level		0.79			2.92				1.75		

2722

Bold value represents toxicant

'Cytothreat' of three chemotherapeutic drugs using allium test and its amelioration by aqueous plant extracts 2723

Figs. 1a–I: Mitosis in control (a) and in anticancerous drugs treated cells (b-l) at pro-metaphase and metaphase (a-f), anaphase (g-h), telophase (i) and resting (j-l) stages of *Allium cepa*. (a) 2n=16, (b) Clumped and stickiness of chromosomes, (c) Pseudochiasma formation, (d) Chromosomal groupings, (e) Fragments (arrows), (f) Rings (arrow), (g) Laggards (arrows), (h-i) Bridges, (j) Micronuclei, (k) Giant cells, (l) Binucleate cells. *Scale bar = 10 μm*

deformity. However, chromosomal fragments, rings, bridges and micronuclei are not observed in cisplatin treatments. Anucleate cells are only observed in 0.10% doses of the drugs. Clumping and stickiness of chromosomes (cisplatin: 0.51% to 1.83%; imatinib: 3.54% to 7.71%; harmine: 7.14% to 31.34%) and giant (cisplatin: 2.28% to 3.61%; imatinib: 6.67% to 14.14%; harmine: 8.11% to 15.30%) and binucleate (cisplatin: 0.00% to 0.58%; imatinib: 0.63% to 1.85%; harmine: 0.64% to 2.03%) cells are the predominant aberrations noted following treatments with the studied drugs.

In relation to control, cisplatin, imatinib and harmine induced mitotic abnormalities in both dividing and resting cells are enhanced significantly (p < 0.05) and it is mostly dose dependent (excepting: 0.10% conc. in resting cells). Harmine is found to induce higher cytotoxicity in meristematic cells of *A. cepa* than the other two drugs, and it may possibly be attributed to the crude nature of harmine used in the present investigation. Assessment of cytotoxicity reveals that both imatinib and harmine are clastogenic in nature as they can induce chromosomal breakages (fragments, rings, bridges and micronuclei) whereas all the studied drugs can affect chromosomal DNA (clumping and stickiness) and cellular metabolism (formation of giant, binucleate and anucleate cells). However, it is reported that most of the chemotherapeutic drugs can induce apoptosis through different signalling pathways reducing DNA damages and eliminating necrotic cells from the system (Kartalou and Essigmann, 2001; Li *et al.*, 2017).

Cisplatin is reported to be cytotoxic in human breast and cervical cancer cells (Lanza *et al.*, 2004). The drug can interact with chromosomal DNA (Sherman *et al.*, 1985) causing DNA damages but also possess the ability to response to DNA repair mechanism (Kerr *et al.*, 1994). Russo *et al.*, (2018) opined that imatinib mesylate can induce DNA damage in crustacean *Daphnia magna* even at low concentrations. Cytotoxicity of harmine is evaluated in four different human cell lines (CBMN, Hela, X33A and Sw 480) using micronuclei assay, and the result suggests that the drug is unable to induce micronuclei levels above that of control levels in a wide range of doses administered (Jiménez *et al.*, 2008). This report is rather contrary to the result obtained with harmine in the present investigation.

Ameliorative potentiality of aqueous plant extracts

Data (dividing cell frequency and total aberration frequency in dividing and resting cells) relating to aqueous plant extracts (extracts of N. sativa seeds and C. longa rhizome) inducing amelioration in cytotoxicity caused due to chemotherapeutic drugs treatments is presented in table 2. Compared to toxicants (represented as control) at different doses, treatment with aqueous plant extracts show significant (p < 0.05) decrement (-) in total cytotoxicity assessed in both dividing and resting cells at variable folds. However, dividing cell frequency manifests significant (p < 0.05) increment (+) as well as decrement (cisplatin and imatinib) in relation to toxicants; although, only decrement (significant at p < 0.05 level) is noted with harmine treatments. Results suggest that both the aqueous extract possess significant ameliorative potentiality and are effective in reduction of cytotoxicity. Aqueous extracts of N. sativa and C. longa demonstrate differential ameliorative responses in relation to the attributes and drugs studied. Aqueous plant extracts are reported to be protective against cytotoxicity assessed in root tip cells of A. cepa following H₂O₂ (Prajitha and Thoppil 2016; use of leaf extract of Amaranthus spinosus) and arsenic trioxide and metanil yellow (Basu et al., 2019; use of seed extract of N. sativa and leaf extracts of Coriandrum sativum, Ocimum tenuiflorum and Pteris vittata) treatments.

Present investigations highlight the followings: 1) compared to control, the drugs induce differential responses in relation to dividing cell frequency. Cisplatin and harmine reduce mitotic index dose dependently, and it is in accordance with the efficacy of anticancerous drugs; however, imatinib shows both increase as well as decrease in mitotic index, 2) chemotherapeutic dose (0.100%) in cisplatin and imatinib as well as that of harmine are found to induce cytotoxicity in both dividing and resting cells thereby suggesting the drugs can be of 'CytoThreat' to non-targeted cells of host (human beings) if proper repair mechanism does not prevail. Further, lower doses of the drugs (degradable amount) are also found cytotoxic, a major concern to eco-system, 3) employed aqueous plant extracts are ameliorative in relation to

cytotoxicity and can be significant for bioremediation. Therefore, it is suggested that aqueous plant extracts of N. sativa (seed) and C. longa (rhizome) may be taken together with chemotherapeutic drugs as preventive measures.

Acknowledgment

The authors are thankful to DST-PURSE programme, Kalyani University (Kalyani University (Award No. SR/PURSE Phase 2/37 (G) dated 2nd November 2017) for providing necessary funding and facilities. Thanks are also extended to Dr. Tapas Majumder and his research students Shri Monaj Karar, Department of Chemistry, Kalyani University for generous supply of the chemotherapeutic drug harmine. Authors are also thankful to Ms. Sharmila Khatun for providing required variety of onions from farmer's house to carry out the experiment.

References

- Abu, N.E. and K.C. Mba (2011). Mutagenicity testing of pharmaceutical effluents on Allium cepa root tip meristems. *J. Toxicol. Environ. Health Sci.*, **3**: 44–51.
- Basu, A. and S. Krishnamurthy (2010). Cellular responses to cisplatin-induced DNA damage. *J. nucleic acids*, **2010**: 1–16.
- Basu, S., A.K. Datta, A. Pramanik, S. Gupta, D. Das, R. Karmakar and B. Ghosh (2019). Assessment of cytotoxicity induced by heavy metal arsenic trioxide and azo-dye metanil yellow in Allium cepa assay and aqueous plant extracts mediated amelioration. Cytologia, (Accepted).
- Bellani, L.M., C. Rinallo and A. Bennici (2009). Cytomorphological alterations in Allium roots induced by surfactants. *Environ. Exp. Bot.*, **31**: 179–185.
- Cepeda, V., M.A. Fuertes, J. Castilla, C. Alonso, C. Quevedo and J.M. Pérez (2007). Biochemical mechanisms of cisplatin cytotoxicity. *Anticancer Agents Med. Chem.*, **7:** 3–8.
- Chen, D., V. Milacic, M. Frezza and Q.P. Dou (2009). Metal complexes, their cellular targets and potential for cancer therapy. *Curr. Pharm. Des.*, **15**: 777–791.
- Deininger, M., E. Buchdunger and B.J. Druker (2005). The development of imatinib as a therapeutic agent for chronic myeloid leukemia. *Blood*, **105**: 2640–2653.
- Desoize, B. and C. Madoulet (2002). Particular aspects of platinum compounds used at present in cancer treatment. *Crit. Rev. Oncol. Hematol.*, **42**: 317–325.
- Farrel, N. (1989). Transition metal complexes as drugs and chemotherapeutic agents. Kluwer Academic Publishers, Dordrecht, Boston.
- Florea, A.M. and D. Büsselberg (2011). Cisplatin as an antitumor drug: cellular mechanisms of activity, drug resistance and induced side effects. *Cancers (Basel)*, 3: 1351–1371.

'Cytothreat' of three chemotherapeutic drugs using allium test and its amelioration by aqueous plant extracts 27255448

- Fuertes, M.A., C. Alonso and J.M. Perez (2003). Biochemical modulation of cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. *Chem. Rev.*, **103:** 645–62.
- Goswami, D., S. Gurule, A. Lahiry, A. Anand, A. Khuroo and T. Monif (2016). Clinical development of imatinib: an anticancer drug. *Future Sci. OA.*, 2: FSO92.
- Hartley, F.R. (1985). Palladium and platinum. *Coord. Chem. Rev.*, **67:** 1–108.
- Heath, E., M. Filipiè, T. Kosjek and M. Isidori (2016). Fate and effects of the residues of anticancer drugs in the environment. *Environ. Sci. Pollut. Res.*, **23**: 14687–14691.
- Iqbal, N. and N. Iqbal (2014). Imatinib: a breakthrough of targeted therapy in cancer. *Chemother. Res. Pract.*, **2014**: 1–9.
- Jiménez, J., L. Riverón-Negret, F. Abdullaev, J. Espinosa-Aguirre and R. Rodríguez-Arnaiz (2008). Cytotoxicity of the βcarboline alkaloids harmine and harmaline in human cell assays *in vitro*. *Exp.Toxicol. Pathol.*, **60**: 381–389.
- Kartalou, M. and J.M. Essigmann (2001). Mechanisms of resistance to cisplatin. *Mutat. Res.*, **478**: 23–43.
- Kerr, J.F.R., C.M. Winterford and B.V. Harmon (1994). Apoptosis: its significance in cancer and cancer therapy. *Cancer*, 73: 2013–2026.
- Kosjek, T. and E. Heath (2011). Occurrence, fate and determination of cytostatic pharmaceuticals in the environment. *Trends Anal. Chem.*, **30:** 1065–1087.
- Lanza, A., A. Tava, M. Catalano, L. Ragona, I. Singuaroli, F.S. R.D. Cuna and G.R.D. Cuna (2004). Effects of the Medicago scutellata trypsin inhibitor (MsTI) on cisplatin-induced cytotoxicity in human breast and cervical cancer cells. *Anticancer Res.*, 24: 227–234.
- Fiskesjö, G. and A. Levan (1993). Evaluation of the first ten MEIC chemicals in the Allium test. *Altern. Lab. Anim.*, **21:** 139–149.
- Li, C., Y. Wang, C. Wang, X. Yi, M. Li and X. He (2017). Anticancer activities of harmine by inducing a pro-death autophagy and apoptosis in human gastric cancer cells. *Phytomedicine*, **28**: 10–18.
- Majdalawieh, A.F. and M.W. Fayyad (2016). Recent advances on the anti-cancer properties of Nigella sativa, a widely

used food additive. J. Ayurveda Integr. Med., 7: 173–180.

- Mollazadeh, H., A.R. Afshari and H. Hosseinzadeh (2017). Review on the potential therapeutic roles of Nigella sativa in the treatment of patients with cancer: involvement of apoptosis - black cumin and cancer. *J. Pharmacopuncture*, **20**: 158–172.
- Pichler, C., M. Filipic, M. Kundi, B. Rainer, S. Knasmueller and M. Mišík (2014). Assessment of genotoxicity and acute toxic effect of the imatinib mesylate in plant bioassays. *Chemosphere*, **115**: 54–58.
- Prajitha, V. and J.E. Thoppil (2016). Genotoxic and antigenotoxic potential of the aqueous leaf extracts of Amaranthus spinosus Linn. using Allium cepa assay. S. Afr. J. Bot., 102: 18–25.
- Rosenberg, B. (1980). Cisplatin: Its history and possible mechanism of action. In: Cisplatin: Current status and new developments. Academic Press, New York. p.9.
- Russo, C., M. Isidori, J.A. Deaver and H.C. Poynton (2018). Toxicogenomic responses of low level anticancer drug exposures in Daphnia magna. *Aquat. Toxicol.*, **203**: 40– 50.
- Sa, G, T. Das, S. Banerjee and J. Chakraborty (2010). Curcumin: from exotic spice to modern anticancer drug. *Al Ameen J. Med. Sci.*, **3**: 21–37.
- Sherman, S.E., D. Gibson, A.H.J. Wang and S.J. Lippard (1985). X-ray structure of the major adduct of the anticancer drug cisplatin with DNA: cis-[Pt(NH3)2(d(pGpG))]. *Science*, 230: 412–417.
- Siddik, Z.H. (2002). Mechanisms of action of cancer chemotherapeutic agents: DNA-interactive alkylating agents and antitumour platinum-based drugs. In: Alison, M.R. (eds.). The Cancer Handbook. Nature Publishing Group, London. pp. 1295–1313.
- Teixeira, R.O., M.L. Camparoto, M.S. Mantovani and V.E.P. Vicentini (2003). Assessment of two medicinal plants *Psidium guajava* L. and *Achillea millefolium* L., *in vitro* and *in vivo* assays. *Genet. Mol. Biol.*, **26:** 551–555.
- Verma, S. and A. Srivastava (2018). Morphotoxicity and cytogenotoxicity of pendimethalin in the test plant *Allium cepa* L. - a biomarker based study. *Chemosphere*, **206**: 248–254.